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Abstract
Classical motion of complex 1D non-Hermitian Hamiltonian systems
is investigated analytically to identify periodic, unbounded and chaotic
trajectories. Expressions for the Lyapunov exponent for 1D complex
Hamiltonians are derived. Complex potentials V1(x) = 1

2µx2 and V2(x) =
µx3 are studied in detail and their Lyapunov exponents are obtained
analytically. It was found that when µ is complex all the trajectories of V1

are chaotic with Lyapunov exponent |Im(µ)| and most of the trajectories
of V2 are periodic when µ is pure imaginary. But for other complex
values of µ trajectories of V2 are non-periodic and show infinite oscillations.
Unbounded neighbouring trajectories of V2 show power-law divergence rather
than exponential divergence as in the case of V1.

PACS numbers: 03.65.Ge, 05.45.Mt

1. Introduction

Recently, non-Hermitian Hamiltonians have attracted much interest. Particularly, PT
symmetric Hamiltonians received special attention due to the fact that their spectra are entirely
real as long as PT symmetry is not spontaneously broken [1–10]. Recently, Mostafazadeh
[11–13] has generalized PT symmetry by pseudo Hermiticity and showed that quantum energy
eigenvalues of such systems are either real or they come as conjugate pairs. A Hamiltonian is
said to be η-pseudo-Hermitian if H † = ηHη−1, where † denotes their adjoint operator and η

is a Hermitian invertible linear operator. Several recent investigations have been carried out
on 1D and 2D pseudo-Hermitian systems [14–17] quantum mechanically.

In ordinary quantum mechanics (Hamiltonians are Hermitian), it is usual to replace
classical position x and momentum p in the classical Hamiltonians by corresponding quantum
mechanical operators x̂ and p̂ to obtain quantum Hamiltonians. Conversely, by replacing
x̂ and p̂ for position x and momentump in quantum Hamiltonians, one can obtain classical
Hamiltonians. It is not clear whether, in general, pseudo-Hermitian quantum Hamiltonians
admit classical counterparts as such. However, recent studies on certain 1D and 2D systems
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have shown a correspondence between quantum and classical mechanics of pseudo-Hermitian
systems. The quantum energy eigenvalues can be obtained by a higher order version of
the Bohr–Sommerfeld-type quantization rule which uses classical momentum functions as
in the case of real Hermitian systems [18]. Further, the zeros of the quantum mechanical
wavefunctions of PT-symmetric Hamiltonians can also be predicted semiclassically by using
generalized classical moments [19]. Certain semiclassical methods which were developed
for quantizing multidimensional real Hermitian Hamiltonians can be applied to 2D PT-
symmetric complex systems to obtain quantum mechanical energies as well. Further, quantum
mechanical frequency spectra of certain pseudo-Hermitian Hamiltonians can be predicted with
their classical trajectories [20]. Therefore, at least, for some non-Hermitian systems, a classical
and quantum correspondence exists.

Recently, Bender et al [21] have studied the classical motion of a class of PT-symmetric
Hamiltonian system H = p2 + x2(ix)ε in great detail. They found that this system exhibits
two phases. During the first phase, ε � 0 and the energy spectrum of the above Hamiltonian is
real and positive due to PT symmetry. However, during the second phase, when −1 < ε < 0,

the spectrum contains an infinite number of complex eigenvalues and a finite number of
real eigenvalues because PT symmetry is spontaneously broken. They found that this phase
transition which occurs at ε = 0 manifests itself in both the quantum mechanical system
and the corresponding classical system. In this paper we are mainly concerned with pseudo-
Hermitian extension of PT symmetric systems. It would be interesting to find out how
such 1D pseudo-Hermitian systems behave classically and whether these systems contain
irregular/chaotic trajectories. It is also important to investigate the sensitivity of the trajectories
to initial conditions. This is usually achieved by calculating Lyapunov exponents. For 1D
real conservative systems, the entire motion is regular. This is due to the fact that for such
systems energy E is the only possible constant of motion and it forces the trajectory to be
regular. However, 1D complex systems can have both regular and irregular motion.

In this paper we investigate two types of 1D complex non-Hermitian Hamiltonian systems
classically. One type consists of 1D PT symmetric systems with real energy spectra and the
other type contains 1D complex non-pseudo Hermitian Hamiltonians with entire spectra
complex. However, one can construct separable 2D pseudo-Hermitian Hamiltonian systems
from such 1D complex non-pseudo Hermitian Hamiltonians (type 2) such that quantum energy
eigenvalues are either real or they come as conjugate pairs. Such a 2D pseudo-Hermitian
Hamiltonian is of the form

H(px, py, x, y) = p2
x

2
+

p2
y

2
+ V (x) + V ∗(y) (1)

where ∗ represents complex conjugation and the 1D non-pseudo Hermitian Hamiltonian from
which this 2D Hamiltonian is constructed is

H(px, x) = p2
x

2
+ V (x). (2)

Note that H(px, py, x, y) is pseudo-Hermitian with respect to the exchange operator
(η : px ←→ py, x ←→ y). Therefore both 1D Hamiltonian types mentioned above are
relevant in the context of pseudo Hermiticity. In this paper, we address the issue of whether
there is a correlation between classically regular/periodic motion and the reality of the quantum
eigenvalues for 1D pseudo-Hermitian Hamiltonian systems. We do this by analysing some
1D pseudo-Hermitian Hamiltonians analytically.

The outline of this paper is organized as follows. In section 2, a general expression
for Lyapunov exponent for complex 1D Hamiltonian systems is derived. We investigate
the classical motion of a complex harmonic oscillator and calculate the Lyapunov exponent
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analytically in section 3. In section 4, first we solve the classical equation of motion for the

system H(px, x) = p2
x

2 + µx3, where µ is a complex number. Finally, we study in detail
trajectories of this system in complex phase space and show that neighbouring non-periodic
trajectories have power-law divergence rather than exponential divergence as in the case of a
complex harmonic oscillator.

2. Lyapunov exponent for complex 1D Hamiltonian systems

In this section, an expression for Lyapunov exponents is derived for 1D complex Hamiltonians.
We assume that the Hamiltonian is of the form

H = p2

2
+ V (x) (3)

where V (x) is a complex potential. The classical equation of motion for this Hamiltonian is

dx

dt
= p =

√
E − V (x). (4)

By rearranging and integrating (4) we have

�(x, E) =
∫

dx√
E − V (x)

= t + α (5)

where α is an arbitrary constant which is determined by initial conditions. Note also that both
time t in the right-hand side of (5) and the energy E are assumed to be real. Now assume that
it is possible to invert equation (5) and

x(t, α) = G(t + α,E) (6)

where G(t + α,E) is the inverse of the function �(x, E). Since V (x) is a complex function
we solve the classical equations of motion in the complex plane. Therefore phase space is
complex with two phase space variables x and p. The arbitrary constant α determines the
value of x at time t = 0 and hence

α = �(x(0), E). (7)

Note that for various values of α we have trajectories starting with various initial conditions.
p(0, α) is automatically fixed when the total energy of the system E is specified,

p(0, α) =
√

E − V (x(0, α)). (8)

In order to calculate the Lyapunov exponent for this system, we monitor the time evolution
of two neighbouring trajectories which are infinitesimally separated at t = 0. Consider two
such trajectories x(t, α) and x(t, α + δα). Using the definitions given in [22, 23], we obtain
Lyapunov exponents for 1D systems as

λ = lim
t→∞

1

t
ln

[∣∣∣∣ �x(t)

�x(0)

∣∣∣∣ +

∣∣∣∣ �p(t)

�p(0)

∣∣∣∣
]

(9)

where �x(t) and �p(t) are given by

�x(t) = x(t, α + δα) − x(t, α) (10)

�p(t) = p(t, α + δα) − p(t, α) (11)

respectively and ‖ denotes the complex norm.
By linearizing the above equations [23] we have

�x(t) = ∂x(t, α)

∂α
�α. (12)
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Therefore

�x(t) = ∂G

∂α
�α (13)

�x(t)

�x(0)
=

∂G
∂α

∂G
∂α

(t = 0)
. (14)

Similarly, using the relation

p(t, α) = ∂G(t, α,E)

∂t
(15)

we obtain �p(t)

�p(0)
as

�p(t)

�p(0)
=

∂2G
∂t∂α

∂2G
∂t∂α

(t = 0)
. (16)

Now we write Lyapunov exponent for the system in (3) as

λ = lim
t→∞

1

t
ln

[∣∣∣∣∣
∂G
∂α

∂G
∂α

(t = 0)

∣∣∣∣∣ +

∣∣∣∣∣
∂2G
∂t∂α

∂2G
∂t∂α

(t = 0)

∣∣∣∣∣
]

. (17)

This is the Lyapunov exponent for 1D systems in terms of function G.

3. Classical motion and Lyapunov exponents of the complex harmonic oscillator

First we investigate the classical motion of the harmonic oscillator with complex frequencies.
The Hamiltonian of such systems is written as

H = p2

2
+

1

2
µ2x2 (18)

where µ = µr + iµi is a complex quantity. Note that this system has two turning points x1

and x2 given by

x1 =
√

2E

µ
(19)

x2 = −
√

2E

µ
. (20)

The equation of motion is

d2x

dt2
= −µ2x. (21)

This can be integrated to

dx

dt
=

√
2

(
E − 1

2
µ2x2

))
. (22)

The solution of the above equation is

x(t, φ) =
√

2E

µ
sin(µt + φ) (23)

where φ is an arbitrary constant which is determined by the initial conditions of the trajectory.
Figure 1 shows a trajectory in the complex x-plane which starts from the turning point

√
2E
µ

.
The real and imaginary parts xr and xi of x are given by

xr = sin(µrt + φ) cosh(µit) (24)

xi = cos(µrt + φ) sinh(µit). (25)
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Figure 1. Trajectory for the potential v(x) = 1
2 µ2x2 in the complex x-plane which starts from the

turning point
√

2E
µ

. E = 1.0 and µ = 1 + i.

Note that when µi = 0, i.e. for real frequencies, trajectories that start from turning points
(φ is real) are straight lines joining two turning points while all the trajectories starting outside
the real axis (φ is complex) or outside these two turning points are ellipses encircling two
turning points. The period of the motion is 2π

µ
. When µr = 0 and µi �= 0, trajectories

exponentially diverge to ∞ as t → ∞. When µr �= 0 and µi �= 0,

x(t, φ) ∼ −sign(µi)
e|µi|t

2i
e−i(µrt+φ)sign(µi) (26)

and trajectories spiral around as shown in figure 1. However, they infinitely oscillate as evident
from equations (24) and (25) as t → ∞.

Now we calculate the Lyapunov exponent for an arbitrary trajectory of this system. For
this system

�x(t)

�x(0)
= cos(µt + φ)

cos(φ)
(27)

�p(t)

�p(0)
= sin(µt + φ)

sin(φ)
. (28)

For large t

cos(µt + φ) ∼
e|µi|t

2
e−i(µrt+φ) sign (µi) (29)

sin(µt + φ) ∼ −sign(µi)
e|µi|t

2i
e−i(µrt+φ) sign (µi). (30)

As t → ∞ ∣∣∣∣ �x(t)

�x(0)

∣∣∣∣ ∼ e|µi|t

2|cos(φ)| (31)

∣∣∣∣ �p(t)

�p(0)

∣∣∣∣ ∼ e|µi|t

2|sin(φ)| . (32)
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Therefore Lyapunov exponent λ is

λ = lim
t→∞

1

t
ln

{∣∣∣∣ �x(t)

�x(0)

∣∣∣∣ +

∣∣∣∣ �p(t)

�p(0)

∣∣∣∣
}

(33)

= |µi|. (34)

When the frequencies are real, i.e. µi = 0, and motion is non-chaotic as expected. When
µi �= 0 Lyapunov exponent is positive and hence motion is classified as chaotic.

4. Classical motion and Lyapunov exponents of the complex cubic anharmonic
oscillator

In this section first we study in detail the classical motion of the complex cubic anharmonic
oscillator. We assume that the Hamiltonian has the form

H = p2

2
+ µx3 (35)

where µ = µr eiθ is a complex constant. Note that when θ = π
2 Hamiltonian is PT symmetric.

The classical trajectories of the PT symmetric case have been studied by Bender et al in
detail [21]. They have calculated the periods of oscillatory motion and escape times of the
trajectories which reach infinity in finite time. They raised the question ‘does the breaking of
P and T symmetry allow for unbounded chaotic solutions?’

The equation of motion is
dx

dt
= p =

√
E − µx3. (36)

Now we rescale x and t by real numbers such that the above equation has the form
dx

dt
= p =

√
1 − eiθx3. (37)

The turning points of this system are

x0 = ei (2π−θ)

3 (38)

x1 = e−i θ
3 (39)

x2 = e−i (2π+θ)

3 . (40)

Now we write 1 − eiθ x3 = eiθ (x0 − x)(x1 − x)(x2 − x) and integrate equation (37). Then
we have ∫

dx√
(x0 − x)(x1 − x)(x2 − x)

= (
ei θ

2
)
t + c (41)

where c is the constant of integration which depends on initial conditions. The left-hand side
of the above equation is an elliptic integral of the first kind and hence equation (41) becomes

1√
x0 − x1

�

(
sin−1

[√
x − x0

x2 − x0

]
,
x2 − x0

x1 − x0

)
= (

ei θ
2
)
t + c (42)

where � is an elliptic function. We invert the above equation in terms of Jacobian elliptic
function sn [24] as

x(t) = x0 + (x2 − x0) sn2

[(
ei θ

2
)√

x0 − x1

2
t + α, κ2

]
(43)

where modulus κ = (
x2−x0
x1−x0

)1/2
and α is an arbitrary constant which is determined by the initial

conditions. Also note that x(t) in the above equation is still a solution of (37), when x0, x1
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and x2 are cyclically changed (e.g. x2 → x0 → x1 → x2). In order to understand how the
trajectories behave, we need to recognize the periodic, bounded and unbounded properties of
the function x(t). First we find complementary modulus κ ′ and complete elliptic functions K

and K ′. They are defined [24] by

κ ′2 = 1 − κ2 =
(

x1 − x2

x1 − x0

)
(44)

K =
∫ π

2

0
(1 − k2 sin2(φ))−

1
2 dφ (45)

K ′ =
∫ 1

0
(1 − t2)−

1
2 (1 − κ ′2t2)−

1
2 dt. (46)

K and K ′ are evaluated directly from the above equations and they are independent of
phase angle θ . After some simplifications

κ =
[

1 + exp

(
−i

2π

3

)]1/2

(47)

κ ′ = − exp

(
−i

2π

6

)
(48)

K = e−i π
12

√
π�

(
1
6

)
2(33/4)�

(
2
3

) (49)

K ′ = ei π
12

√
π�

(
1
6

)
2(33/4)�

(
2
3

) . (50)

Before calculating Lyapunov exponents of this system, we study the phase space
trajectories in detail. With the above quantities, we determine the periodic and unbounded
nature of the trajectory of the Hamiltonian (35).

Since α in (43) alone determines the trajectory, depending on the value of α, trajectories
become bounded or unbounded. Jacobian elliptic function sn(u) is a doubly periodic function
of u with periods 4K and 2iK ′ . It is analytic except at the points congruent to iK ′ or to
2K + iK ′(mod 4K, 2iK ′). These points are simple poles. For more information on properties
of Jacobian elliptic functions see [24]. Now we relate the periodicity of Jacobian elliptic
function sn(u) to the periodic motion of trajectories and poles of sn(u) to the unbounded
motion as follows:

The trajectory becomes unbounded and the particle escapes to infinity when conditions

ei θ
2
√

x0 − x1

2
t + α = iK ′ (51)

or
ei θ

2
√

x0 − x1

2
t + α = 2K + iK ′ (52)

are satisfied for some real positive t and the time taken for the particle to escape to ∞ is
given by

T = 2(iK ′ − α) e−i θ
2√

x0 − x1
(53)

or

T = 2(2K + iK ′ − α) e−i θ
2√

x0 − x1
(54)
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depending on which equation of (51) or (52) is satisfied. If equations (51) and (52) do not
have real solutions, the particle will not escape to ∞ in a finite time. On the other hand, if
the particle does not escape to ∞ and the trajectory satisfies the following equation for real
positive t and for some integer n and m:

ei θ
2
√

x0 − x1

2
t + α = 4nK + 2miK ′ (55)

then the trajectory is periodic with the period

T = 4(2n0K + m0iK ′) e−i θ
2√

x0 − x1
(56)

where n0 and m0 are the smallest n and m which satisfy equation (53) for real positive t. Now
we illustrate the above ideas by considering the case when θ = π

2 . For this θ the Hamiltonian

in (35) is PT symmetric and the turning points are x0 = i, x1 =
√

3
2 − i

2 , x2 = −
√

3
2 − i

2 . The
trajectories are given by

x(t) = i −
√

3 ei π
3 sn2

[(
ei 7π

12
)

3
1
4

2
t + α, κ2

]
(57)

and α determines the initial conditions of the trajectories. For this Hamiltonian system, two
types of motion were observed; unbounded and periodic. First we consider the trajectory
starting from the turning point x0 = i. For this trajectory α = 0 and

x(t) = i −
√

3 ei π
3 sn2

[(
ei 7π

12
)

3
1
4

2
t, κ2

]
. (58)

Since

iK ′ = ei 7π
12

√
π�

(
1
6

)
2(33/4)�

(
2
3

)
this trajectory is unbounded and goes to i∞ as t reaches

√
π�( 1

6 )

3�( 2
3 )

.

Now we consider a trajectory which starts from any point in the positive imaginary axis
above the turning point x0. That is x(0) = ai. With real number a > 1, α for this trajectory is
given by

α = F

(
sin−1

√
a − 1

2 sin
(

2π
3

) ei 5π
12 , k2

)
(59)

where F is the elliptic function of the first kind. It was found that when x(0) = ai and α is
real,

F

(
sin−1

√
a − 1

2 sin
(

2π
3

) ei 5π
12 , k2

)
= α0 ei 7π

12

where α0 is a real number. Hence

t =
(

2(iK ′ − α)

3
1
4

e−i 7π
12

)
is real and therefore all the trajectories starting from points on the positive imaginary axis
above i will reach i∞ in a finite time

t =
√

π�
(

1
6

)
3�

(
2
3

) − 2α0

3
1
4

. (60)
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Figure 2. A typical periodic trajectory of the potential v(x) = ix3 which starts from outside the

imaginary axis. This has the period T = 2
3

√
π�( 1

6 )

�( 2
3 )

.

These are the only trajectories which are unbounded and go to i∞ in finite time. Now we
consider a trajectory starting from the turning point x1. It is convenient to write x(t) as

x(t) = x1 + (x0 − x1) sn2

[(
ei π

4
)√

x1 − x2

2
t, κ2

]
(61)

= x1 −
√

3e−i π
3 sn2

[(
ei π

4
)√

3

2
t, κ2

]
. (62)

Obviously x(t) has no poles for all real t values. However, this is a periodic function with

the period T satisfying (ei π
4 )3

1
4

2 T = 4(K + iK ′).

Hence the trajectory is periodic with the period T = 2
3

√
π�( 1

6 )

�( 2
3 )

. Similar to the arguments

used above, it can be shown that any trajectory which is not starting from the positive imaginary

axis above i is periodic and has the period T = 2
3

√
π�( 1

6 )

�( 2
3 )

(see figure 2).

Now we consider the general case where Hamiltonian is not necessarily PT symmetric.
That is θ can have any value between 0 and 2π . For given θ there are two types of motions
found as in the PT-symmetric case. The first type of motion is the particle escapes to infinity
in finite time. In the PT-symmetric case

(
θ = π

2

)
, we observed that the particle escapes to

infinity if it starts from a point on the imaginary axis above i. For the other values of θ, the
particle escapes to infinity if it starts from points along a specific curve. These curves, for
some θ values, are shown in figure 3. Another interesting observation is that when a trajectory
starts from any point on these curves, it traverses along the same curve to infinity in a finite
time.

The second type of trajectories are non-periodic but oscillatory as shown in figure 4.
These trajectories do not close themselves in finite time. Trajectories go around each and
every turning point and then move away but they return to the neighbourhood of turning
points. This takes place indefinitely.

In order to find trajectories which go to infinity in finite time, we use the condition (51)
derived earlier. After some simplifications equation (51) becomes
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Figure 3. When µ is complex, trajectories of the cubic potential v(x) = µx3, go to infinity if they
start from points along certain curves. Figure shows twelve such curves for twelve values of θ.

Each curve is unique for a given θ .
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Figure 4. A typical trajectory of the cubic potential v(x) = µx3 which does not go to infinity in
finite time, when µ is complex. These kinds of trajectories go around each and every turning point
and then move away, but they will come back to the neighbourhood of turning points again. This
takes place indefinitely.

t =
√

π�
(

1
6

)
3�

(
2
3

) ei 2π
3 e−i θ

3 − 2α(x)

3
1
4

e−i 5π
12 e−i θ

3 (63)

where α(x) is given by

α(x) = F [sin−1
√

Q, k] (64)

and

Q = x − x0

x2 − x0
= 1

2

(
x ei θ

3 e−i π
2 − ei π

6
)

sin
(

2π
3

) . (65)

F [sin−1 √
Q, k] is an elliptic function of the first kind.
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Table 1. For various values of θ (where θ = aπ ), initial values r(0)min and φ(0) of the trajectories
which escape to infinity in finite time are shown. The angles φ(0) are given in radians.

x = r(t) eiϕ(t)

θ = aπ

a r(0) min ϕ(0)

0 0 π
2

0.1 0.2929 1.562 39
0.3 0.8058 1.691 02
0.5 1.0000 1.570 7
0.7 0.8058 1.443 7
0.9 0.2929 1.558 9
1.1 0.2929 4.724 3
1.3 0.8058 4.839 4
1.5 1.0000 4.712 3
1.7 0.8058 4.585 3
1.9 0.2929 4.700 42
2.0 0 3π

2

A trajectory which starts from a point x in the complex plane will go to infinity in a finite
time if x satisfies the following equation:

Im

[(√
π�

(
1
6

)
3�

(
2
3

) ei 2π
3 − 2α(x)

3
1
4

e−i 5π
12

)
e−i θ

3

]
= 0. (66)

On the other hand every trajectory starting from points on the curves in figure 4 goes to infinity
along the same curve in finite time T∞ where

T∞ =
(√

π�
(

1
6

)
3�

(
2
3

) ei 2π
3 − 2α(x)

3
1
4

e−i 5π
12

)
e−i θ

3 . (67)

We solved equation (66) for various values of θ . Table 1 shows the minimum values of
|x| for which the particle escapes to infinity in finite time.

In order to find all the periodic trajectories of this system for arbitrary θ , we use (56) and
demand that T should be real in (56). For a given x one can obtain θ for which the trajectory
starting from x is periodic. The condition which should be satisfied for this situation is

Im

[
4
√

π�
(

1
6

)
3�

(
2
3

) e−i
2π

3 e−i 2θ
3

]
= 0 (68)

or

Im

[√
π�

(
1
6

)
6�

(
2
3

) e−i
5π

12 e−i θ
3 eiϕ

]
= 0 (69)

where

ϕ = tan−1

[
4n sin

[
π
12

] − 2m cos
[

π
12

]
2m sin

[
π
12

] − 4n cos
[

π
12

]
]

.

Note that the above two equations are independent of x. Therefore from (67), we obtain
θ = π ± 3

2 lπ where l = 0, 1, 2, 3, . . . satisfies the above conditions regardless of the starting
point of the trajectory. For these θ values all the trajectories are periodic with a real period

T = 4
√

π�
(

1
6

)
3�

(
2
3

) e−i
2(π+θ)

3
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unless they satisfy (66) with t < T , where t is given by (63). Similarly from (68),
expressions for θ and T can be obtained as θ = 3ϕ − 5π

4 ± 3lπ , where l = 0, 1, 2, 3, . . .

and T =
√

π�( 1
6 )

6�( 2
3 )

e−i
5π

12 e−i θ
3 eiϕ . Note that n and m in the expression for ϕ above are the

minimum integer values which satisfy equation (68).
Now we calculate Lyapunov exponents of this system. As before two cases are considered

separately. One is the PT symmetric case, where θ = π
2 , and the other is the non-PT symmetric

case , where θ �= π
2 . For the PT symmetric case x(t) is given by

x(t) = G(t, α) = i −
√

3ei π
3 sn2

[(
ei 7π

12
)

3
1
4

2
t + α, κ2

]
. (70)

Since in the PT symmetric case all the trajectories are periodic unless they start from pure
imaginary x(0) above i. Let x(0) = ai where a is a real number greater than or equal to unity.

Since the particle escapes to infinity as t → T∞ =
√

π�( 1
6 )

3�( 2
3 )

− 2α0

3
1
4

where

α0 = e−i 7π
12 F

(
sin−1

√
a − 1

2 sin
(

2π
3

) ei 5π
12 , k2

)

we rewrite the equation (17) as

λ = lim
t−T∞

1

t
ln

[∣∣∣∣∣
∂G
∂α

∂G
∂α

(t = 0)

∣∣∣∣∣ +

∣∣∣∣∣
∂2G
∂t∂α

∂2G
∂t∂α

(t = 0)

∣∣∣∣∣
]

. (71)

By using relations

d(sn(u))

du
= cn(u) dn(u) (72)

d(cn(u))

du
= −sn(u) dn(u) (73)

d(dn(u))

du
= −k sn(u) cn(u) (74)

we obtain
∂G
∂α

∂G
∂α

(t = 0)
= sn(u) cn(u) dn(u)

sn(α) cn(α) dn(α)
(75)

∂2G
∂t∂α

∂2G
∂t∂α

(t = 0)
= cn 2(u) dn2(u) − sn2(u) dn2(u) − k sn2(u) cn 2(u)

cn2(α) dn2(α) − sn2(α) dn2(α) − k sn2(α) cn 2(α)
(76)

where u =
(

ei 7π
12

)
3

1
4

2 t + α. Note that when u → iK ′, sn(u) → ∞, cn(u) → ∞ and
dn(u) → ∞. Now we expand sn(u), cn(u), dn(u) near iK ′ as

sn(iK ′ + �u) = 1√
k�u

+
1 + k

6
√

k
�u + · · · (77)

cn(iK ′ + �u) = −i√
k�u

+
2k − 1

6
√

k
i�u + · · · (78)

dn(iK ′ + �u) = −i

�u
+

2 − k

6
√

k
i�u + · · · (79)
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we approximate sn(u), cn(u), and dn(u)

[sn(iK ′ + �u) cn(iK ′ + �u) dn(iK ′ + �u)] → − 1

k�u3
(80)

and

[cn 2(u) dn2(u) − sn2(u) dn2(u) − k sn2(u) cn 2(u)] → − 3

k�u4
. (81)

Now we have

λ = lim
�u→0

�u ln

[∣∣∣∣ 1

k�u3

∣∣∣∣ +

∣∣∣∣ 1

k�u4

∣∣∣∣
]

(82)

and λ = 0. This shows neighbouring trajectories do not diverge exponentially. However,
neighbouring trajectories show power-law divergence. For the non-PT symmetric case x(t) is
given by

x(t) = x0 + (x2 − x0) sn2

[(
ei θ

2
)√

x0 − x1

2
t + α, κ2

]
(83)

where α is written as

α = �

(
sin−1

[√
x(0) − x0

x2 − x0

]
, k

)
(84)

� is an elliptic function of the first kind. Following a similar procedure as in the case of
PT symmetry, we obtain the same expression for Lyapunov exponent λ for the trajectories
which go to infinity in finite time T∞. That is

λ = lim
�u→0

�u ln

[∣∣∣∣ 1

k�u3

∣∣∣∣ +

∣∣∣∣ 1

k�u4

∣∣∣∣
]

(85)

and hence λ = 0. We conclude that neighbouring trajectories in this case also do not diverge
exponentially but diverge as the third power. In all the other cases neighbouring trajectories
do not diverge and Lyapunov exponent λ is zero.

5. Summary and discussion

In this paper we studied the classical motion of two 1D non-Hermitian Hamiltonian systems,
the complex harmonic oscillator and the complex cubic potential analytically. In addition to
the PT symmetric case, non-pseudo Hermitian 1D cases were studied. These 1D potentials can
be combined to form 2D separable pseudo-Hermitian Hamiltonians which have the classical
motion of a 1D non-pseudo Hermitian complex system. This can be explained with the
following example. Consider the Hamiltonian H1 = p2

2 + µx3 with µ = µr + iµi. When
µr �= 0 and µi �= 0,H1 is neither PT symmetric nor pseudo-Hermitian. However, the 2D

Hamiltonian H can be constructed as H = p2
x

2 +
p2

y

2 + µx3 + µy3 where µ is the complex
conjugate of µ. This 2D Hamiltonian is pseudo-Hermitian under the exchange operator;
η : x ↔ y, px ↔ py . Quantum mechanical eigenvalues of H are either real or come as
conjugate pairs. Since H is separable, classical motion is still governed by 1D complex

Hamiltonians H1 = p2
x

2 +µx3 and H2 = p2
y

2 +µy3. We studied analytically the classical motion
of these cubic systems in detail. Also we derived the Lyapunov exponent for the general 1D
Hamiltonian of the form H = p2

2 +V (x) and the same was obtained explicitly for the potentials
V (x) = µx2 and V (x) = µx3. It is important to mention that the Lyapunov exponents of
escape trajectories of this potential cannot be calculated numerically as the particle escapes to
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infinity very rapidly. We investigated whether there is any connection between PT symmetry

and non-chaotic motion of classical trajectories and found that when H1 = p2
x

2 + µx3 is PT
symmetric, certain neighbouring trajectories diverge not exponentially but cubically.

One of the interesting questions to answer is that whether there is a connection between
reality of the entire quantum spectrum and regularity of the classical trajectories of the 1D
pseudo-Hermitian systems. As is well known in 2D and higher dimensions, real Hermitian
Hamiltonians can have classical chaos (e.g. Henon Heiles system). However, in 1D Hermitian
Hamiltonians cannot have chaos. But as shown in this paper, 1D complex non-Hermitian
systems can have chaos in complex phase space. The two systems which have been investigated
in this paper support the idea that when the quantum eigenspectra are entirely real, the classical
trajectories are regular and when the eigenvalues are entirely complex, all the trajectories are
chaotic.
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